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The eigenvalues and eigenfunctions of the Smoluchowski equation are 
investigated for the case of potentials with N deep wells. The small parameter 
8=kT/V, which measures the ratio of the thermal energy to a typical well 
depth, is used in connection with the method of matched asymptotic expansion 
to obtained asymptotic approximations to all the eigenvalues and eigenfunc- 
tions. It is found that the eigensolutions fall into two classes, namely (i) the top- 
of-the-well and (ii) the bottom-of-the-well eigensolutions. The eigenvalues for 
both classes of solutions are integer multiples of the squares of the frequencies 
at the top or bottom of the various wells. The eigenfunctions are, in general, 
localized to the top or bottom of the corresponding well. The very small eigen- 
values require special consideration because the asymptotic analysis is incapable 
of distinguishing them from the zero eigenvalue with multiplicity N. Another 
approximation reveals that, in addition to the true zero eigenvalue, there are 
N -  1 eigenvalues of order e x p ( - J ) .  The case of other possible multiple eigen- 
values is also examined. 

KEY WORDS: Smoluchowski equation; deep-well potentials; eigenvalues; 
matched asymptotic expansions. 

INTRODUCTION: THE CLASS OF POTENTIAL 

It is a well-known fact that the time evolution of a system governed by a 
linear partial differential equation can be inferred from the knowledge of 
the eigensolutions of the corresponding eigenvalue problem. This is the 
case for the time-dependent Kramers and Smoluchowski problems. For 
this reason, there are numerous studies of the eigensolutions of the 
Kramers and Sraoluchowski operators (see Risken<l~). 

Incidentally, we are using the terms "Smoluchowski equation" and 
"Smoluchowski problem" to denote the high-friction limit of the full 
Kramers equation or Kramers problem (see, e.g., Risken "~ and Gardiner <2)). 
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We want to reconsider the problem of finding the eigenvalues of the 
one-dimensional Smoluchowski equation. There are at least three reasons 
for revisiting this problem. 

First, most of the previous analyses have focused on either one- or 
two-well potentials (see, e.g., H/inggi and ThomaslS~). We would like to 
study the case of a multiwell potential. Such wells might occur in models 
of ion transport through protein channels (see, e.g., Barcilon et alia1). Also, 
in studies of two-dimensional crossings with large anisotropy, it is con- 
venient to have results of the general one-dimensional case on tap (see, e.g., 
Klosek et al.~5~). 

Second, the cases which have received the greatest amount of attention 
are those of the small eigenvalues. We would like to compute all the eigen- 
values and all the eigenfunctions, at least approximately. 

Finally, many technical questions related to a systematic mathematical 
approach to the computation of the eigensolutions of the Kramers problem 
remain in spite of the efforts of numerous applied mathematicians (see, e.g., 
H~inggi et alJ 61 for a very complete list of references). For example, it 
would be desirable to develop an approximation scheme which would 
enable us to obtain, without any ad hoc approximations, the crossover for- 
mulas (see Mel'nikov and MeshkovtT~). Also, it would be useful to revisit 
by analytical means the problem for a periodic potential extensively dis- 
cussed by Ferrando et aL ~8~ Of course, we cannot address these questions 
here since we are using the Smoluchowski equation as our starting point. 
Nevertheless, it is our hope that the method of matched asymptotic expan- 
sion developed here can be extended to the full Fokker-Planck equation. 

In this analysis, we shall focus our attention on a class of potentials 
V(x)  which have the following three properties. 

(i) They have N~>2 quadratic minima. Furthermore, if mi is the 
location of the ith minimum, then in the neighborhood of mi we can write 

V =  vi + ~_coT(x -- mi) -  + ""  (0.1) 

(ii) They have N -  1 quadratic maxima. In the neighborhood of the 
ith maximum located at Mi,  the potential can be written as 

1 "~ 
V =  V i -  ~ g 2 7 ( x - - M i )  2 q- . . .  (0.2) 

(iii) The potentials become large and positive as x tends to either 
positive or negative large values. The growth at infinity is such that 

I dt I ~ dt 
_~.~ v ' ( t ) '  j V,( t)< oo (0.3) 

where a prime denotes a derivative with respect to x. 
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1. T H E  E I G E N V A L U E  P R O B L E M  

We want to find the eigensolution {Pk, trk} of the problem 

s =trk Pk ( 1.1 ) 

where the operator s is the familiar Smoluchowski operator 

dx V'] (1.2) 

In the above equation, 6 is a dimensionless number which measures the 
ratio of thermal energy k T  to depth of a typical well. For deep wells 

d i~l  (1.3) 

To Eq. (1.1) we add the requirement that the eigenfunctions decay at 
infinity, or more specifically 

Pk ~ L "-(R, e v/~ dx) (1.4) 

The adjoint of the above eigenvalue problem is the problem for P~(x), 
which is related to pk(x)  as 

Pk = Pk e-  v/~ (1.5) 

The eigenvalue problem (1.1) now reads 

- dx ] +~ke-V/OPk=O (1.6) 

or equivalently 

d2pk V' 
(~.V~ - -- "[-tTkPk=O (1.7) 

We require the solutions of (1.7) to satisfy the analog of (1.4), namely 

Pe ~ L2(R, e -  v/.,. dx) (1.8) 

We adopt (1.7)-(1.8) as the working formulation of the eigenvalue problem 
for the Smoluchowski operator. We note in closing the orthogonality 
relation 

;co PiPke-V/'~ d x = O  a/=/:ak (1.9) if 
- - c o  
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Of course, we can also cast the eigenvalue problem into the canonical 
Sturm-Liouville form 

d 2~7~ k 
6-~x2 + ( q + a k )  mk=O (1.10) 

where 

and the "potential" q is 

mk= Pk e - v/2,~ ( 1.11 ) 

1 V" 1 q = ~  -- Z '2 (1.12) 

A general treatment of eigenvalue problems such as (1.11)-(1.12) can be 
found in classical treatises such as those of Titchmarsh c9) and Coddington 
and LevinsonJ '~ For instance, Titchmarsh ~9) (pp. 107, 127) states that the 
study of the spectrum falls into one of four distinct categories. One such 
category is that for which 

q ( x ) o - o o  as x o + o o  

f~ iq (x ) l_ , /2  dx  < oo 
- - c O  

(1.13) 

In view of the smallness of ~, this is precisely the case of interest to us. Note 
that the integrability of [ql- 1/2 is related to condition (0.3). Incidentally, in 
this case, the spectrum is discrete. We should mention that potentials which 
have a linear growth at infinity are excluded from this class; in particular, 
piecewise linear potentials fall outside of this analysis. 

2. D O M A I N  DECOMPOSIT ION 

We shall take advantage of the smallness of ~ to obtain the solution 
as an asymptotic expansion in 6. In particular, we shall use the method of 
limit-process expansion (Kevorkian and Cole (1~)) to obtain asymptotic 
expansions valid in different overlapping domains. The method will become 
clear in the sequel; suffice it to say at this stage that we shall consider four 
different types of domains. In each of these types of domains we shall solve 
an appropriate version of the differential equation governing the eigenvalue 
problem; finally we shall synthesize an eigensolution by piecing together 
bits of those solutions. For instance, the first such type of domains will 
consist of the well bottoms, say ~ ,  where (see Fig. 1 ) 

~ , = { x l l x - m , l ~ 6 ' / 2 } ,  i = 1  ..... N (2.1) 
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Typical potential and decomposition of domain. 

The second type of domains, say ~'7~, will be centered around the well tops. 
We shall see that 

4 =  {xl  Ix-MA ~Ore}, i =  1 ..... N -  1 (2.2) 

Not surprisingly, the third and fourth types of domains, say qli and Ni, will 
deal with the regions away from the well extrema where the potential goes 
either "up" or "down," i.e., 

{., I M,_, + < x < } 
ql i={xim~+6m<x<M_Om } _' i = 1  ..... N (2.3) 

In the above definitions, we have tacitly used the fact that 

Mo = - oo, MN = oo (2.4) 

The rationale for this domain decomposition is easy to understand. Indeed, 
in view of the fact that 6 is small, we might feel justified in neglecting the 
first term in (1.7) since it is multiplied by 6. This approximation leads to 
the simpler equation 

-- V' ~F~+ a F =  0 (2.5) 

This equation does indeed yield approximations to the desired eigenfunc- 
tions in intervals where V' does not vanish, i.e., in the ~ /and  ~ domains. 
However, as we approach points where V' vanishes, i.e., as we enter into 
the ~ and ~-- domains, the first term in (1.7), which we previously neglec- 
ted, is no longer small vis-/L-vis the second one. Therefore, a different 
approximation must be obtained. All these different approximations must 
be matched in regions where the various domains overlap. 
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Incidentally, the condition (0.3) on 
naturally in the process of  solving (2.5). 
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the integrability of  I/V' arises 

3. THE ~ ,  ~ D O M A I N S  

In the method of limit-process expansions, the asymptot ic  expansions 
associated with the q~, ~ domains  are obtained by holding x ~ q / o r  ~ fixed 
and letting ~ ~ 0. 

3.1. The " U p "  Domains 

To fix our ideas, let us assume that  x ~ qli: then we look for a solution 
of the form 

P=v~~ U~i~ Ul~)(x)+... for x~ql i (3.1) 

Note  that  for the ease of  reading we have suppressed temporar i ly  the index 
k of  the eigenfunction. The factors v~~ v~1)(6 s) ..... which form an 
asymptot ic  sequence, give the explicit magni tude of the various terms of 
the asymptot ic  series. The actual shape of the solution is provided by 
U~~ u~ill(x) ..... To  simplify the analysis, we shall anticipate some 
results, and write form the outset (3.1) as 

P=v,(~)[Uti~ for x~qli (3.2) 

We must also write an asymptot ic  series for the eigenfunction 

tr = cr ~~ + g l/2trt 1 ~ + .., (3.3) 

Because the asymptot ic  representations are in terms of power  series, trans- 
cendentally small terms in either the eigenvalues of eigenfunctions and 
invariably lost. Although such terms are asymptotical ly small (i.e., as ~ ~ 0), 
their numerical values and relevance may  not be negligible. In fact, they are 
of  great physical significance in this problem. To  evaluate such terms, we 
shall have to resort to some ad hoc means. 

Substituting these expressions in (1.7), we see that  to leading order 

dU{O) 
V '~ '~ i  + (o) (o) - ~r U;  = 0  

dx 
(3.4) 



Eigenvalues of 1D Smoluchowski Equation 273 

The integration of this equation is straightfoward. However, in anticipation 
of the matching at the ends of the qi~ domain, we write 

' I ' 1 1 ] 
V'(t) V'(t) COT(t-m~) 4 f27( t -Mi)  

1 I 
+co,(t--ms) ~ ( t - M i )  (3.5) 

Making use of this expression, it is easy to see that 

o401 r 
~ol ~ _ .  (x - -mi )  / ,  

U i ( '~  J - -  r i ~ 2  

I I~"(  1 1 1 ) )d t  I (3.6) 
xexp  a ~~ ,, VZ(t ) co~(t_mi)q ~2~(t_Mi 

where u~ is a constant of integration. 
As a result, 

u~O,(x ) fu i (Mi--  mi)~176176 . (Mi-- x)-~,'~ as x --+ M i 
"~ o,~ o,'- (3.7) ~ui(Mi--mi)-a'oq~27.(x--mi) / ,  as x ~ m i  

where 

Ii = exp o "~~ - , dt (3.8) 
J,,, \V ' ( t )  o97(t--m,) + g-2~(t--Mi) 

3.2. The " D o w n "  Domains 

The analysis of the generic "down" domains ~i follows along very 
similar lines. The asymptotic series representation is taken to be 

e=6i(6)[D~~ ] for x ~ ;  (3.9) 

To leading order, the equation for D~ ~ is identical to (3.4). Therefore, we 
can immediately write 

(m i -- X)a'i'ilo~f 
D~~ = di ( ' \ -  M i -  l) ~'~ I 

x x ro,o,f( ' 2 2 '  ' 
L oM,_, V'(t) co i ( t - - rn i )+~i_ l ( t - -Mi_l )  

(3.10) 

where d~ is another  constant of integration. 
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As a result 

" - -  - ~ - -  " o" 0 j . Q 2  ~ - x ~ r  0 1 . ( 2  2 
J d i ( m i - - M i _ 1 ) -  ' i - l J i . ( m i - - x  ) . , 

DI~ ~ ~ di(m i -- M i l )  ~ 0 1 # 0 ~  ' ( X  - -  M1 1) -,~o)/a~_, 

where 

(• 
,_, V'(t) 

as x ~  m i 

a s  x----~ M i _  l 

(3.11) 

1 1 )dt] (3.12) 
co~(t-rni) q - g 2 ~ _ l ( t - - M i _ l )  

Note that the approximat ions  (3.5) and (3.10) to the eigenfunction are 
valid for all values of  a (~ i.e., they do not determine the eigenvalue. 

3.3. First and Last Domains 

The forms of the solutions in the first and last intervals are slightly dif- 
ferent from that  in the other intervals, namely, 

D~l~176176 f" ( I 
_~ V'(t) 

and 

[ U ~ ) ( X ) = U N ( X - - m N )  / Nexp a ~~ - -  ,~ V'(t) 

As a result, 

where 

Similarly, 

og~(tlml))dt]  (3.13) 

1 
co~(t_mN))dtJ (3.14) 

D~~ ~'~176 as x ~ m t  

r ; ( '  1) ,1 J , = e x p  L a(~ _~  V~t) co~(t-rnl) 

�9 O (0 )  CO 2 
U~)(x)  ~ d N ( x -  mN) / ~ a s  x ~ mu 

(3.15) 

(3.16) 

(3.17) 

3.4. Unavoidable Singularities 

Before considering the top and bo t tom intervals, we should inquire as 
to whether it might be possible to hookup  directly a "down" solution to an 
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"up" solution across a domain  ,~. In other words, if we focus on, say, the 
generic min imum m~, why can we not tie the expressions in (3.7) and (3.11) 
by setting 

u i ( m  i __ M i  ) _~o11~2~ = d i ( m  i __ M i - 1) -~176 J i  (3.18) 

thus taking advantage of the fact that  the behavior  of D~i ~ is identical to 
that  of  UI ~ near  x = m,.? The reason why this procedure is not acceptable 
is to be found in the computa t ion  of the higher order corrections. Recalling 
the expansion (3.2) for the "up" solution, we know that  

- V' dU~') to) (I)  __0,.( 1 }tf(O) 
--d~x + o  U,. = _ ;  

(3.19) 
d U ( 2 )  2 (o) 

- -  V '  ~ v  i + _{O)rr(2) _ _1711) (1) _(2)rr(O) d U i 
d x  ~' ~ i  - -  U i - -  u t ;  i d x  2 

Now on account  of  (3.4) 

d 2 Ui(~ a (~ V" 
d x  2 V 12 

_ _  U~O~ + 
at o) dUl o) 

V' dx 

0"10) V" U~O) 0 .(0)2 

V,--- Y- + V,--T UI ~ 

i f ( O )  V"  
= a ~~ U ~~ (3.20) 

V,2 

As a result, in the neighborhood of the min imum mi, the equation for the 
second-order corrections reads 

0 "(1) 0 "(2) 1 d2 Ui(O) 
d U l  2) a(~ U(2) = (1) U(~ + V '  d x  2 dx V' - i  V' Ui + " 7  - i  

0-(1) ,r(2~ if(O) V" 
= V' --'U!1~+ZV 7 U(i~176 '3 U~'~ (3.21) 

Because of the last term on the r ight-hand side, the above equat ion is 
usually not integrable. The exception occurs when a t ~  
However,  even jf this condition is satisfied, a more  stringent one appears  
when we go to the next order. In fact, unless a t~ is a integral multiple of  
co~, a case which requires special study and which we shall revisit, we must  
conclude that  we cannot  hook  up directly an "up" solution to a "down"  
solution at a minimum. 

82Z82/I-2-18 
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3.5. Zero Solut ions 

In closing, we should not dismiss the possibility that the solutions in 
either an "up" or a "down" domain are identically equal to zero, i.e., that 

U~ ~ = 0 (3.22) 

o r  

D~ ~ = 0 (3.23) 

We shall see that this will indeed be the case whenever these outer solu- 
tions must be matched to inner solutions which have an exponential decay. 

4. THE T O P - O F - T H E - H I L L  D O M A I N S  

If the outer solution in a generic domain, say q4, is nonzero, i.e., is 
given by (3.6), then as can be seen from (3.7), this outer solution blows up 
as we approach the maximum M;. Clearly, we must examine the vicinity of 
this maximum to see how to prevent such singular behavior. To that effect, 
we introduce a stretched variable G such that 

~,=~(x-M,) (4.1) 

and look for the eigenfunction, in the domain ~-~,., as an asymptotic series 
of the form 

P = O~(6)[t~(F=,) + 6'/'-TI ~ '((~) + . . . ]  (4.2) 

The factor of 61/'- in the definition of the stretched variable is dictated by 
our desire to reinstate the previously neglected second derivative of P in 
the governing equation. The other factors are simply there for the simpli- 
fications of the results to be derived. 

In limit-process expansion parlance, we are looking for a solution with 
~; fixed and 6 ~ 0. We see that to leading order, Eq. (1.7) implies that 

d,-T~O) dT~O) ~o) , o l - 0  (4.3) 
d~'~ +2G--~-~  + 2 ~ i - ' T i -  

We temporarily drop the superscript and subscript and digress from our 
main goal to consider the properties of the solutions of 

d2T d T  
d~ 2 4- 2~ ~ - +  2sT=  0 (4.4) 
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We can check, say by constructing series solutions, that the most general 
solution of this equation is 

M S l  s 1 3  
(4.5) 

where tl and t2 are arbitrary constants and M(a, b, z) is the confluent 
hypergeometric function (see Abramowitz and Stegun, ~12~ No. 13.1.2, 
p. 504). 

For the purpose of matching this solution to the neighboring "up" and 
"down" solutions, we shall need to know its asymptotic behavior as 
( ~  ___co. We can find it by using formula No. 13.5.1 in Abramowitz and 
Stegun, ~-'~ but we must be careful to compute the argument of _ (2  
correctly. 

For example, if we define 

and then write 

( =  I(I ei~ (4.6) 

_ (2  = I(I-" eiC'=+") (4.7) 

we must use different expressions for the asymptotic expansions depending 
upon whether -Tr /2<2~+Tr<31r/2  or - 3 n / 2 < 2 ~ + g < - l r / 2 ,  i.e., 
depending upon whether - 31r/4 < ~ < 7r/4 or - 57r/4 < ~ < - 31r/4. In par- 
ticular, negative values of ( correspond to an argument of - 7r. The correct 
result is 

/'(1/2) 
T ~~ tl F(1 /2-s /2)  

( /'(3/2) .] 
+ t2 I ( I / ' (1- -s /2)J  

y. (1 +s/n),,(�89 
17! (2. 

n ~ O  

I F( 1/2) ei"C"- ,v2 
�9 I ( I - "+  t, F(s/2) 

(F(3/2) e i"~'/2- i~] . i + ... 
+ t2 I(I F---~2--+-~-s/2-) J e-~-' I(Is- as ( ~  _+oo (4.8) 

It is important to note that for certain choices of tl and t2, the top-of-the- 
hill solution can be made to have exponential decay on either the left- or 
right-hand side. Finally by choosing appropriate values of s, i.e., for certain 
eigenvalues, the solution can decay exponentially on both sides. We discuss 
these cases next. 
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Summary 

Three special top-of-the-hill solutions will play a key role in the sequel. 
First, if we set 

F(1/2) /'(3/2) 
tl F( 1/2 - s/2) + t2 F( 1 -- s/2) = 0 (4.9) 

i.e., if we define 

t ]=  
7 t r  

(4.10) 
F(1/2) F(1 - s /2 )  

~ r  

(4.11) 
/ ' (3/2)/ ' (1/2--s/2) 

t 2 ~--- 

where r is an arbitrary constant, then the resulting solution of (4.4), which 
we label R((; s), namely 

. (s/2+ 1/2, 3/2, --(-)]  [ M(s/2, 1/2, _(2) M 
R((; s)=rc L F(---~F-~ -]s--~ c. ~ s - ~  J (4.12) 

decays exponentially to the right (see Fig. 2). In fact, substituting (4.10) 
and (4.11) in (4.8), we see that 

nein(s - -  1 )/2 

R ( f ; s ) ~  F(s/2) F(1--s/2) 

_~eints/2 - ~ ) ] 

1"(1/2 + s/2) r -~2 -- s/Z)_] e-C-' I(l~-I +""  

( 7 ) ]  e, ,2 e ,: + (4.13) 

i.e., 

R((;s)~e-C' l f f lS-~+. . .  as ( -~oo (4.14a) 

whereas 

R(r s) 
2~ 

1"( 1 - -  s / 2  ) 1"( 1 /2  - s /2  ) 
Ir as ~ - o o  (4.14b) 

Alternatively, if we set 

/ '(I/2) /'(3/2) 
t~ t2 0 (4.15) 

r (  1/2 - s /2)  r (  1 - s /2)  
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2.0- 
1.51.0~- M ( "35' '5'-xZ)~// /"'N!.\ ~ k ' J  ( x"7 ) 

Z 0.5 

0 ," " -  ' "  -.. __'S~__-"-s 
-0.5 "/ xMl.85,1.5,-x z) 

I I I I -3 -2 -1 0 1 2 3 X 
Plot of M(0.35, 0.5, -x2), xM(0.85, 1.5, -x2), and R(x, 0.7). Note the rapid decay of 

the R-function for positive values of x. 

or, equivalently, define 

t, = F( 1/2) F( 1 - s/2) 
nl (4.16) 

t2 =/ ' (3/2) F( 1/2 -- s/Z) 

where 1 is another arbitrary constant, then the corresponding solution of 
(4.4), which we denote by L(~; s), namely 

L(~; s) = n [ M(s/2, 1/2, _~2) + r M(s/2 + 1/2, 3/2, _~2)] 
[F(1/2) F ( 1 - s / 2 )  F (3 /2 ) - -~ ( (~s -  ~ j (4.17) 

decays exponentially to the left. In fact 

L ( ~ ; s ) ~ e - r  as ~ - - ~  (4.18a) 

On the other hand, 

2n 
Z(C;s)~ I~1-~'+... as ~ o o  (4.18b) 

F( 1 - s/2) F( 1/2 - s/2 ) 

These "right" and "left" solutions will be needed to cut off those eigen- 
funtions which are confined to one particular well. 

The third type of solution of note is one which decays exponentially 
on both sides. This type of solution is obtained not only by selecting t~ 
and/or t2, but also by restricting s to particular values. We shall see that 
this leads to a class of eigensolutions. 
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We return to the asymptotic behavior (4.8): we can get 
algebraic decay by either setting 

tl = 0  

s 
1 - - ~ =  --n, 

o r  

n=O,  1 .... 

Barcilon 

rid of the 

(4.19) 

t 2 = O  

1 s (4.20) 
- - - - =  - - n ,  n = O ,  1,... 
2 2 

Of course, if (4.9) holds, then the solution (4.5) reduces to 

T((; s) = t,(M(n + ~, 3 _ _ , : ,  _ ( 2 )  

3 = tze -r (M( --n, ~_, (-) 

= t2e -~2. 2-2"-IH,_ ,  + ~(() (4.21) 

where H2,,+~(() is the Hermite polynomial of order 2n + 1. In arriving at 
this last result, we have used the Kummer transformation (see Abramowitz 
and Stegun, "zl No. 13.1.27) as well as the definition of the Hermite polyno- 
mial in terms of the confluent hypergeometric function (see Abramowitz 
and Stegun, ~2) No. 13.6.38). 

Similarly, if (4.20) is chosen, then 

T(( ;s )=t lM n+~,-~, 

=t,e-~2. M ( - n ,  ~, ~ 2) 

=t,e-~2.~n ! - He,_,,(v/2~) (4.22) 

Translating these results in terms of Eq. (4.3), this means that 

7- (n+ 1 ) ~  

X - -  Mi"x / 2 ( x  - -  M i ) 2 ~  ;  4.23  

i = 1  ..... N - l ;  n = 0 ,  1 .... 
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are eigensolutions. Indeed, these expressions satisfy the Smoluchowski equa- 
tion in the neighborhood of the ith top and can be smoothly extended over 
the entire infinite range of x by means of zero solutions. These eigensolu- 
tions are the obvious generalization of the "inverted parabolic potential" 
eigensolutions discussed by Risken m (p. 109). In (4.23), the superscript 
indicating the order of magnitude has been dropped for ease of reading. 
Instead, a new superscript T is used to reminds us that we are dealing with 
a top-of-the-hill eigensolution. Two additional subscripts are used to label 
the eigensolutions: the first subscript, i, labels the particular maximum to 
which the eigenfuntion is confined; the second, n, refers to the nodes. We 
shall see next that the bottoms of the wells determine the other class of 
eigensolutions. 

5. THE B O T T O M - O F - T H E - W E L L  D O M A I N S  

To examine the solutions in the intervals e~i, we introduce another set 
of stretched variables Ca defined as 

co, ( x -  m,) (5.1) 
~ i -  (26)1/2 

We look for the eigenfunction in the ith well as an asymptotic series of the 
form 

P = p , (~ ) [a ' ,~  + a ' / ' - ~ '  ~(~,) +. . .  ] (5.2) 

Substituting in (1.7), we see that the leading-order equation is 

d2Bl~ dB~~ al~ B ~~ -- 0 (5.3) - - i  
dr 2 G - - ~ ,  + 2 r-'~-2 - i  - 

Following the same approach as for the intervals ~-7~, we first examine the 
properties of the solutions of the equation 

d2B 2~ dB 
d{ 2 - ~  + 2sB = 0 (5.4) 

We can check that the most general solution of this equation is 

s 1 s 1 3  

where, once again, b~ and b2 are constants and M(a, b, z) is the confluent 
hypergeometric function. 
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We record the asymptotic behavior of this general solution for future 
matching purposes. Using formula No. 13.5.1 in Abramowitz and 
Stegun] 12~ we deduce that 

[ F(a/2) e -i~s/2 F(3/2)e i~'-s+l,/2] 
B~ b, r(1/2+s/2) +b,_ r(1 +s/2)  "l~lS+"" 

r(1/2) /'(3/2 2 ] + bl --------SF( -s/2__ + b2 /'(1/2 - s/2)J 

x ~ (1/2+s/2),(1 +s/2),, 
. = o  n!~'-" .er - s - I  as  ~ + o e  (5 .6 )  

5.1. Second Class of Eigenvalues 

Clearly, the general solution grows exponentially as ~ tends to either 
plus or minus infinity. This behavior precludes any possibility of matching 
this bottom-of-the-well solution to the outer solutions, which have, at best, 
an algebraic groth away from a minimum. The only exception from this 
behavior occurs if we choose either 

o r  

hi?)= 0 

1 s 

2 2 

b~ ) = 0 

s 

2 

n = 0 , 1  .... 

n = O ,  1 .... 

(5.7) 

(5.8) 

Combining these two results, we see that we must set 

s = n ,  17=0, 1 .... (5.9) 

We might as well abandon the generality of (5.5) and adopt instead the 
following normalization of the bottom-of-the-well solution corresponding 
to those integral values of s, namely 

B(~ n) = H,,(~) (5.10) 

By expressing (5.9) in terms of the original variables of the problem, we get 
the eigenvalues 

o'(~ = no)~, n=O, 1,... (5.11) 
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or, to parallel the notation introduced earlier, 

S=nog~, i = 1  ..... N, n = 1, 2,... (5.12) O'in 

We have deleted from the above expression the value n = 0, since it requires 
special consideration: we shall deal with it later. Whenever possible, we 
shall dispense with the full complement of subscripts and superscripts. 

The above eigenvalues have been discussed previously by H~inggi and 
Thomasl~; however, these authors did not bother to construct the corre- 
sponding eigenfunctions, which is what we want to do next. Indeed, as they 
stand, the bottom-of-the-well solutions (5.10) are not acceptable eigen- 
functions. We must connect them to outer "up" and "down" solutions and 
examine whether, in turn, these "up" and "down" dolutions can be ter- 
minated by appropriate R and L functions in the neighborhood of the hills. 

5.2. The Generic Case 

We shall construct the eigenfunctions only for the generic case. We 
digress to explain what constitutes the generic case. 

We have seen that the spectrum consists of two classes of eigenvalues, 
the T class and the B class, associated with the top-of-the-hill and bottom- 
of-the-well frequencies respectively, i.e., 

spectrum = o " T  u o -B 

N '  , ,=o 
= U 

i I i = l  

We shall define the generic case to be that in which none of the eigenvalues 
are repeated, with the exception of the zero eigenvalue, which is always a 
multiple eigenvalue. In other words, all bot tom frequencies ~;  and top fre- 
quencies /2 i are incommensurable with each other, or more accurately, 
there are no integers p and q such that either 

pco ,=qog] or pco ,=qI2~ (5.14) 

When this is not the case, some eigenvalues are multiple and the results dif- 
fer from those of the generic case. These special cases will be examined later. 

5.3. Synthesis of the B-Eigenfunct ion 

We consider the generic case and return to the B eigenvalue associated 
with the ith well. Since the squares of the frequencies in all the other wells 
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differ from integral multiples of co~, it follows that the eigenfunction must 
be set equal to zero in all the other wells. In fact, though not as localized 
as the T-eigenfunctions, the B-eigenfunction which we are looking for will 
be different from zero in only five adjacent domains, namely in ~,. and the 
two domains on either sides. 

Therefore, we postulate that the eigensolution has the form 

(O,_,(O) l~_,L(~,_,,nco~/s for x ~ ~,._, 

|6i('~) Di(x) for x E ~i 
I Pi,B,(x) = ~H,,(~i) for x ~  (5.15) 

]vi(6) Ui(x) for x~~ 
~,0;(~) riR((;, mo~/C2~) for x e 

We now embark on the task of connecting these various pieces of the solu- 
tion. Note that we have arbitrarily taken the magnitude of the eigenfunc- 
tion to be O(1) in &~. 

If the different pieces of solutions obtained thus far match on over- 
lapping domains, then we do have a valid approximation of the eigenfunc- 
tions. To check this, we follow the procedure for matching in limit-process 
expansionsJ ~1) In particular, in order to match the solution in the ith well 
to the neighboring "up" solution on the right, we must write both the inner 
variable ~; and the outer variable x in terms of an intermediate variable, 
say ~?~, such that, for example, 

09 i (5.16) 
~ = c~ - 1/2 + ~ r / i  

with 2 such that 

0 < 2 < 1/2 (5.17) 

but otherwise arbitrary. Next, ~l; is kept fixed while 6 J. 0. In that limit, the 
"up" solution and the bottom-of-the-well solution must agree (to within the 
order of approximation to which we are working). In other words 

lim{H"(O-~/2+:qi)+'"}alo = lim { v i (6 ) a io  U~~ +''" } (5.18) 

Crudely speaking, the behavior of the bottom-of-the-well solution for large 
values of its argument must be the same as the "up" solution as it 
approaches the end point m,.. Making use of the property of the Hermite 
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polynomials (Abramowitz and Stegun, (j2~ p. 775, No. 22.3.10), as well as of 
(3.7), we see that 

2"6-"12 +"~l~ + . . . .  vi(6) u i ( M  i - -  m i )  . . . .  2/VJi2'~12COZ"6n2~n +... (5.19) 

Therefore, the matching is indeed possible provided that 

v,(6) = 6-" /2  

ui = 2"12wT( M~-- m,) "~ (5.20) 

Similarly, we can also match the bottom-of-the-well solution to the "down" 
solution in ~ provided that 

6;(6) = 6-" /2  
(5.21) 

di = 2"/2co;:( mi - M,_ l) '''~ ' Ji~ ' 
where 

[ f~  ( 1 ~  V'(t)  j 1 0 ~ - , ( t - M i - 1 ) l  ) ] J , ,=exp  nco~ " _  co2(t_ms)-t dt (5.22) 

The final step consists in terminating the outer solutions by means of an 
R-solution in ~,. and an L-solution in ~-7~-1- We turn next our attention 
first to the solution in ~-/~. The solution there is 

B _ 0,(6) r,R((,; nco~/g-2~) P i n  - -  

= 0,(6) r iR(~i(x - M;)/(26)'/2; nco~/~) (5.23) 

We have written the solution in ~,. in terms of the outer variable x to 
shortcut the matching procedure and dispense with the intermediate 
variable. Holding x fixed and letting 6J,0, we see from (4.14b) that 

2rdz / [2. \ -,,o~Tl~7 
0~(6) ~ ( ~  (Mi-- x) ) v(1-nco~/2~) F(1/2--ncoT/2f27) \( ) - / 

0i(6) 6 "~~ 2riIt 
1"(1 -- naJ~/2f2~) F( 1/2 -- nco~/2t2~) 

( 2 "~,,%l-ar 
/ M , - . /  . . . .  /5.241 

\ - - - I /  

For this expression to match with U~ as given in (3.6), we must set 

0, (6)  = 6 . . . .  ~/~-~ v , (6)  

1 (  _nco7~'7/ (~ ~TJ\--2-jnc~176 ,. 2 (5.25, ri= F 1 2o,.r (Mi--mi)"Zi , ,u,  
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where 

L,--exp mot ,,, V ~  r o ~ ( t - , n D + ~ 2 ~ ( t - M , )  

The analysis of the matching of L((~_ 1; m o ~ / ~ )  to D,. is very similar to the 
previous one and yields 

0i_ i(6) = 6-"~"/-~QL' 6~(6) 

l i _ l =  F 1 ~ F 
2g2"i_ l J 2g27_ l J 

-~ 
1 , , i  

X " ' i - - I  ( l l i i - - M i _ l )  d i (5.27) 

This concludes the matching procedure: we have now determined all the 
constants and orders of magnitude entering in the expression (5.15) for the 
eigenfunction. Indeed, combining (5.20), (5.21), (5.25), and (5.27), we now 
know that 

0 i _  1 ( 6 )  = 6 - ' 1 ( ~  I + 1/2) 

6,(6) = 6 -'12 

vi(6) = 6-"12 (5.28) 

0i(6) = 6- " "C ' -a~ + 112) 

and 

l i _ l = l  F 1 ~ F 
2~ 2t27_1) 2 ~ _ 1  

.j 2 .~ 2 
/ ~ Q -  . \ " < o i l - Q i -  I 

i - -  11 d i  
, , ,  

d - "~,,I-,,,,,t,, a.r v,,o;mT_, 
i - -  ~ w i  t , , , i  - -  , , -  i -  l # J i ~  1 

u i = 2"12~o7(Mi - -  mi),,e'~12o~ 

In 

(5.29) 

' 

r , =  F 1 2a~;)r 7-~;)\T) (M,-m,)"S,,,u, 

summary, the analysis of the bottom-of-the-well domains (see 
Fig. 3) implies that the B-eigenvalues are 

B = n ( . o f  o in (5.30) 
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and the corresonding eigensolutions 

B P,,(x) =, 

1 (2~o~'~"12(f2~_1"~ ''~ (mi -  M, ,)"+"~ , ' 
~\61 \261 

x F  1 :-~-7-- F 2n;_,,/ 2~;_ ,) 

{ O i - i  (x--Mi-t),~--A-v--- for x e . ~ _ l  
L \(26) 1/2 207_ j j  

(2co~ '~"i2 ( m i -  M,_ i'~"~ 
-d--) \ ~ -  M-7-2-7_, ) (.,,- x)" 

[ l 
xexp m~ ,,~ V'(t) m~(t-mD 

+ , dt for xsN,- 
~27_l(t-Mi_l) 

H,, \ ~ o ~ )  for x e ~  

"1 2 2 (2'o:y'i2(M,-m,y'<~ 
\ 6 ) \ M , - x )  

[ s ; (D ' xexp mot t) " COT(t - m;) 11 

1 
-~ ~,_,(t_Mi) ) dt I for :~~/ i  

~ 2 2 1 (2<o~,,,-(~,,o,,'-~, ~M,-,,,),,+,,o~,o~;,,, 
~ \  6 I \261 

x F  1-~77j \~ 2f2~} 

xR  ~ ( x - M D , - ~ 7  ) for xeF, .  

(5.31) 

The above form of the eigenfunctions is valid for the "inside" wells, i.e., for 
i=  2 ..... N - 1 ,  provided of course that N>~ 3. The eigenfunctions for the 
first and last wells are slightly different. 
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1 

0.6 0.8 I~./f//1.2 1.4 vV X 

f 6  

0.6 0.8 1.2 1.4 
X 

Fig. 3. Plot  of bottom-of-the-well  eigenfunctions for n = l ..... 6 and  & = 0.0l.  In view of our  
normal izat ion,  the functions become larger  as n increases. Obviously,  they are concent ra ted  
near  the well bot tom,  but  show a tendency for c l imbing the potent ia l  walls as n increases. 

6. THE ZERO EIGENVALUES 

We have already remarked that the zero eigenvalue, being a common 
eigenvalue for every well, is always an eigenvalue with multiplicity N 
to O(1) in 8. We shall see that this multiplicity is resolved to the next 
order, which is a transcendentally small correction. Needless to say, this 
transcendentally small correction is of paramount importance in various 
theories, such as the theory of activated chemical reactions. For this 
reason, these eigensolutions have received a great deal of attention in the 
literature. Most of the previous work dealt with a two-well potential. For 
a detailed discussion of the small eigenvalues for an N-well potential, we 
refer the reader to Schuss 113~ (p. 224). Our discussion is simply a generaliza- 
tion of his approach. It is interesting, though, to see how the analysis of the 
small eigenvalues relates to that of the higher ones. 

The first step in the analysis necessary for splitting the zero eigen- 
values is the construction of the related eigenfunctions. For reasons which 
will become clearer in a moment, we denote these eigenfunctions by Po s and 
p s ,  where the index i takes only the values i = 1, 2 ..... N -  1. 
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We dispose of the eigenfunction labeled Pg simply by noting that 

ag=O 
PoB= 1 

(6.1 

is an exact eigensolution, correct to all orders of 6. This eigensolution is 
associated with the fact that 

fi(x) = Cexp ( -  ~ )  (6.2) 

Clearly 

a = 61/2tr (1) + . . .  (6.3) 

it follows that Eq. (3.4) for the "up" and "down" outer solutions satisfies, 
respectively, 

dU(O) 
V'  - - - i  0 

dx  

- -  V' dDCi~ = 0 
dx  

(6.4) 

U(.O) ~/A i 
' ( 6 . 5 )  

D~ ~ = d  i 

which are, of course, special cases of (3.6) and (3.10). In other words, the 
outer solutions are piecewise constant. The difficulties discussed in Sec- 
tion 3 about joining solutions across a bottom region ~i do not exist for 
such piecewise constant solutions: we simply set 

d i = l,I i (6.6) 

Another way of justifying what might appear as an arbitrary matching is 
to remember that in ~ the solution is a Hermite polynomial and the order 
of this polynomial is proportional to the zeroth-order eigenvalue. In order 
words, the solution in &i is 

B~ ~ = b i H o ( ~ i  ) 

= b  i (6.7) 

is the exact steady-state solution. 
To obtain the eigenfunctions Pi s ,  we return to the approach of Sec- 

tion 3. Since the eigenvalues are now assumed to have the form 
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For all these reasons, we settle for a solution of the form 

P(~ i for X ~ i W ~ i W : l l i  (6.8) 

The next step is to join these constant pieces across the top-of-the-hill 
domains ~-~. To this effect, we return to Section 4, and more particularly to 
(4.3), which now reads 

d2T (o) dT(O) 
i 2 ---i - 0  + (~--~-g - (6.9) 

The most general solution of this equation is 

T~~ = a; + t,. eft((;) (6.10) 

The matching of this inner solution to the outer solutions is trivial and 
yields 

ai+t~=c~§ for i = 1 , 2  ..... N - 1  (6.11) 
a i - -  t i = c i ) 

As a result, the eigenfunctions are 

t 
C e for XEC..~ik.)~ik-)~li  ) 

1 1 / 12 i 
P ~ =  ~ ( c ~ + ~ + c , ) + ~ ( c i + ~ - - c ~ ) e r f ( ~ ( x - - M ~ )  for x e ~  (6.12) 

kci+l for X E ~ i + l k . d ~ i + l k . ) O ~ l i + l  

Note that the constants c~ are arbitrary: so, without loss of generality, we 
set all but one of them equal to zero and adopt the following definition of 
the eigenfunctions: 

rfc ( x - - M i _ l )  for x s ~-~i_ l 

B 
Pio  = for X S G.~i k.) ~ i k . )~[ i  (6.13) 

l l 0  erfc((2~2)',~_(x M,))  - ~ . -  . for x~F,.  

for X E ~ i + t W ~ + l W q l i + l  

In other words, the eigenfunction P~ is localized to the domains 
Di w ~ w qli, and falls off exponentially to zero outside. 

If we tried to pursue the asymptotic series to higher orders, we would 
not be able to get any corrections to the eigenvalues or eigenfunctions. For 
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this reason, we adopt the above expressions, which are correct to within 
transcendentally small terms, and rely on a Rayleigh-Ritz approach to 
improve the eigenvalues. More specifically, making use of (1.6), we define 
the small eigenvalues by 

6 J-~o (dP/dx) 2 e-v/6 dx 
a= S_~ P2e_V/,~ dx (6.14) 

where P and a stand for Pi~ and a~. If we substitute in this formula the 
expression for P obtained in (6.13), we deduce that 

a~ = s exp ( (`0 i Vi-~-vi)+12~exp( o9~ V~jv~) (6.15) 

As usual, this expression is valid for the inner wells, i.e., for i = 2 ..... N -  1. 
For the first and last well, the formulas are slightly different, namely 

aSl0 = f2~ exp ( c o - - ~  V,~v , )  
(6.16) 

aS ON_, exp ( V , v _ ~ - v , y )  
N--  1 , 0 - -  (.ON 

These are the only expressions which involve the specific depths of the 
various wells! 

7. COMMENSURATE SQUARE FREQUENCIES 

The generic case examined previously excludes the possibility that 
certain eigenvalues are equal, i.e., that there exist integers p and q such that 

po9 7 = qcoy (7.1) 

We have also excluded the possibility that bottom and top frequencies are 
commensurate, namely that 

pto~ = qt2~ (7.2) 

Let examine this last case first. 

7.1. Commensurate Top and Bottom Frequencies 

Actually, we only need to consider the cases in which the square of the 
frequency of a well is commensurate with the square of the frequencies of 
one of the two neighboring tops. Therefore, for the sake of discussion, let 
us assume that the ith well and ith hill are such that 

pco~ = ql2~ (7.3) 

822/82/I-2-19 
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Retracing the steps we took to construct p r ,  we can easily see that nothing 
pathological occurs. However, the situation is different for p n and p n+ ~,." 
Indeed, these eigenfunctions require the existence of certain R and L 
solutions, more specifically of R((;; no9~/I2~). In particular, for n = p ,  we 
have 

R(~,; , ,co~/~, ~) = R(~,; po);/~," 2) 

= R((;; q) (7.4) 

But R(~, q), is just a "top" eigenfunction, i.e., decays exponentially on both 
sides! Therefore, it cannot be used to cut off the "bottom" eigenfunction. 
Consequently, we must reject this eigenvalue. This conclusion is not valid 
if the frequency of the next well is commensurate with the two frequencies 
under consideration. 

7.2. Commensurate Well Frequencies 

Once again, the only cases which need to be considered are those for 
which neighboring wells have commensurate frequencies. Therefore, let us 
assume that there exist two integers p and q such that 

pco~ = qco~+ , (7.5) 

Reviewing our derivations of the various eigenfunctions, we see that 
nothing needs alteration in this case. However, we may want to couple the 

B two adjacent wells and adopt different expression for the eigenfunctions Pip 
and P~+ ~,q. More specifically, rather than using 

R ~ (x--  M,.); p-~Tj ,  L ~ ( x -  Mi); q--~- iJ  (7.6) 

to terminate the eigenfunctions in the vicinity of the hill at x = M~, we 
could use even and odd solutions of (4.3) with algebraic decay. 

8. A SIMPLE EXAMPLE: THE QUADRATIC POTENTIAL 

In this section, we illustrate the results previously obtained by con- 
sidering a very simple and well-known example, namely a quadratic a 
quadratic potential and more specifically the symmetric quadratic potential 

V = ( x  2 -  1) z (8.1) 
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It is obvious that  this potential  satisfies the requirements of  the Int ro-  
duction. Also, we can easily see that  the min ima are at 

ml = - I  
(8.2) 

m 2 = 1 

The single hill is located at the origin, i.e., 

M I  = 0  (8 .3)  

Also 

V I : V 2 : 0  
(8.4) 

V t = 1 

Finally, the bo t tom frequencies are 

t.ol = 2 x//2 
o~_~ = 2 , / ~  I8.5 I 

whereas the top frequency is 

O1 = 2  (8.6) 

Clearly, since the bo t t om frequencies are identical, they are commensurate .  
Note  also that  

co~ = 2~2~ = ,o~ (8.7) 

Therefore, we have a case of  a top square frequency being commensura te  
with the square frequency of a nearby well. 

S p e c t r u m  

In view of the symmetry  of the potential,  we expect all eigenfunctions 
to be either even or odd functions of  x. 

As usual, we have the eigensolution (6.1) 

~ g = 0  (8.8) 
Pon= 1 

There is one other small eigenvalue. It has the form (6.16) since there are 
no "interior" wells for this potential  
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axno = ~ exp - 

,/2 

p f o = e r f ( ~ x  ) (8.9) 

The remaining eigenvalues are 
a = ({ 8n} ? )w ({an} ?) w ({ 8n} ?) (8.10) 

Consider first the simple eigenvalues of class T. The corresponding eigen- 
solutions are as given in (4.23), namely 

r =4(2n+ 1) 0" 1,2n + 1 p~,.,,+,=H,_,,+,(__~fx)exp(_~x2 ) (8.11) 

The remaining eigenvalues have, in principle, multiplicity 3 since they are 
common to the hill and to the two wells. Therefore, we ought to look for 
three sets of eigenfunctions associated with these eigenvalues. One set of 
eigensolution is simply the remaining T-class eigensolution, namely 

tr r = 4(2n) 1,2n pT,,z,=H2,,(__~fix)exp(_2x2) (8.12) 

The other eigenfunctions are 

( 16"~"/2//1-x~" x)" 
6J \2x'-J (1+ 

H,, ( ~ ( 1  + x ) )  for 

( 16'~"/2//1- x'~" x)" 
6J \2x'-J (1+.  

s _  _ 1),, ('4"~"/2 {2"~ '' / ' (1 /2 )  
P : " -  ( \ 6 )  \62 r (n+ l / 2 )  

16)"/2/' 1 +xy' x)" 
6,1 \ 2 x 2 , /  ( l -  

H,, ( ~  (1 - x ) )  for 

(~) ' /2  ( 1 \-~-x~_--x,_ / + x Y '  (1 -- x)" 

for x�9 

for x�9 

(1 
M n, 2' 

for x�9 

x � 9  ~2 

for 

2~2) for x �9 

x �9 ~2 (8.13) 
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It is tempting to write the odd analogue of the above set. However, as we 
saw in (4.21), xM(n + 3/2, 1/2, -2x2/~) has exponential decay and cannot 
be hooked to the outer solutions. Thus, as in the discussion of the previous 
section, the commensurability of the square frequencies of neighboring hill 
and well reduces the multiplicity of certain eigensolutions. 

9. CONCLUSIONS 

We have considered the eigenvalue problem for the one dimensional 
Smoluchowski equation for poentials with N wells. The wells are assumed 
deep: the large depth of these wells provided us with the small parameter 

which we used for our asymptotic analysis. We found that the eigen- 
solutions fall within two classes: (i) the top-te-hill and (ii) the bottom of 
the well. 

The eigensolutions of the first class are the union of the eigensolutions 
for each hill of the potential treated as a single inverted parabolic hill. 
Consequently, the eigenvalues are integer multiples of the squares of the 
top-of-the-hill frequencies. The corresponding eigenfunctions are Hermite 
polynomials modulations of Gaussian functions centered around the 
various hill tops. 

A similar picture holds for the second class of eigensolutions. Namely, 
these eigensolutions are the union of the eigensolutions for the various well 
bottoms treated as single parabolic wells. As a result, the eigenvalues are 
integral multiples of the squares of the bottom frequencies. The eigenfunc- 
tions are more complicated than those of the previous class, but they share 
many of the same features. In particular, they are confined to the various 
well bottoms, and have the aspect of a Hermite polynomial modulated by 
a Gaussian function. 

This picture is altered if either the square of the frequencies of two 
nearby bottoms or a bottom and a top are commensurate. In this case, the 
eigenfunctions can span the two wells. L 

For most applications, the important eigensolutions are those 
associated with the small eigenvalues. We found that in addition to the 
zero eigenvalue corresponding to the steady state, there are N - 1  small 
eigenvalues. These eigenvalues are of order e x p ( -  1/~) and hence trans- 
cendentally small insofar as the asymptotic sequence { ~,,/2} ~ is concerned. 
Hence, they canJot be captured by the same asymptotic expansions as that 
for the large eigenvalues. 

Of course, the results presented here are not uniformly valid in that 
eigensolutions of very large order may require special consideration. In 
particular, it is not clear whether these results hold for n ~ ~-~/2. However, 
this point is academic at this stage. 



296 Barcilon 

In closing, we note that even though higher order eigenvalues carry 
information about the potential, this information is not easily extracted! In 
fact to leading order of in the asymptotic expansion we have been using, 
the "kinetics" eigensolutions associated with the N smallest eigenvalues 
contain as much information about the potential as the higher order eigen- 
values! This suggests that the inverse problem for potential with deep wells 
is not worth contemplating. 
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